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The scabronines, metabolites from the bitter mushr8ancodon Scheme 1. Synthetic Strategy toward Scabronine G
scabrosusare related to a broader class of angularly fused tricyclic il addn

diterpenoids known as cyathaneQur interest in scabronine G o e ¥
(1) followed a report by Ohta which disclosed it to induce the %X ==, Zj%xﬂ
5

kinetic
enolate
trapping
— = .

production and excretion of nerve growth factor (NGF) in 1321N1 gr:%?;!%

human astroglial cell3Its methyl ester derivative?] is even more 3.x=0 rapping

active in promoting excretion of NGF and an additional neurotro- )

phin, interleukin 6 (IL-6). Consistent with these biochemical

markers, dramatic neuronal differentiation of rat pheochromocytoma

cells (PC-12) was also observed. Accordingly, compounaisd2

fall in to a class of nonpeptidyl structures exhibiting neurotrophic

properties® )
Naturally occurring polypeptidyl neurotrophic factors play a E:K‘Af%%t;%’r?;n”ﬁf G(RAE @)

central role in mediating neuronal growth and survit@he study

of the mechanism of action of these factors (cf. NGF and BDNF) Scheme 2. Attempted Synthesis of Cyclopentenone 62

is one of the central challenges to the neurosciences. The clinical

application of naturally occurring polypeptidyl neurotrophic factors

(o

T g

in reversal of neurodegenerative disorders (cf. Parkinson’s, Alzhe- 4 ab --“O’> &d

imer's Diseases) has been investigated. However, unfavorable H ©

pharmacokinetics require their direct infusion into appropriate 9

sectors of the brain, thus seriously complicating their progression  2Key: (a) Li/NHs, PhNT, THF, —78 °C, 73%; (b) allylSn(Bu,
to medical applicatiofi. Pd(PPR)s, LiCl, THF, 55°C, 96%; (c) 9-BBN, THF; NaOH, kD, 0 °C,

0" %: ° 9
One of the goals of our laboratory is that of identifying promising 92%; (d) Jones reagent, acetone, 82%; (€) PPAQEHTS °C, 60%.

small molecules with neurotrophic activity. Toward this end, we

are drawn to natural products which exhibit such activity and whose

structures invite new possibilities in chemical synthesis. Earlier in

our program, we reported total syntheses of the extensively oxidized
: . o : - expecteds.

neurotrophic agents tricycloillicinone, merrilactone A, and jiade- K this then di o il

fenin® The scabronines struck us even more important in light of W€ took this then disappointing outcome to presage potentia

the data reported above. Herein we describe the first total synthesisProPIems in fashioning the cyclopentenone moiety ol cycliza-
of scabronine G. tion of a three-carbon fragment based at C9 Be8uch a modality
We operated from the pleasingly simple idea that scabronine G would require an attack at C4, vyhich is 1,3-.diaxial to the angular
can beviewed as an annulated (ring A) one-carbon ring-expanded Methyl group andortho to the hindered C ring. The take-home
(ring C) version of the {)-Wieland-Miescher ketone3).8 Trapping lesson for us, still keeping within the spirit of Scheme 1, was to
of the reductively generatedtans BC fused kinetic enolate derived ~ Securely install the substitution at C4 via the Z group, leaving the
from 4 would provide the as-yet undefingdl (Scheme 1). The cyclization event to occur at C9. Reductiondodind acylation with
condition placed on the Y and Z functions bfis that they be ~ Mander’s reagent afforded the known ketoesit2(Scheme 3}?
integratable to afford. Anticipating conjugate attack of a cyano ~ Conversion of the ketone to its enol triflate followed by hydride
nucleophile on the 4,9-enofiethe remote C6C9 backbone reduction gave unsaturated est&? Transformation of the ester
relationship would be solved through sound stereoelectronic in 13to the corresponding Weinreb amiéiand subsequent addition
principles rather than through ad hoc steric hindrance based of vinylmagnesium bromide provided the divinyl ketond, Lewis
selectivities. In the concluding phases, sequential interpolation of acid-mediated Nazarov cyclization provided the requisite cyclo-
two C; fragments, which emerge as C15 and C13, respectively, pentenoné as a single olefin isoméf.Indeed, conjugate addition
would lead to8 and thence td and2. of Nagata’s reagehto the enone iré and trapping of its derived
We first describe an initiative which, while unsuccessful from aluminum enolate with TMSCI gave a silyl enol ether which was
the perspective of our proposed total synthesis, provided a valuableconverted tdl5 as showri$ Installation of the isopropyl group via
teaching in structuring our later work. From° kinetically Negishi coupling (notably, to a secondary spnter) afforded.6.1”
controlled enol triflatio followed by Stille cross-coupling gave  The orchestration of stereocontrolled Nagata addition with enolate
diene9 in the expected stereo- and regiocontrolled manner (Schemetrapping and cross-coupling has apparently not been widely

2). Chemoselective hydroboration of the terminal olefin and further
oxidation provided carboxylic acitlO. Interestingly, acid-mediated
Friedel-Crafts-type annulation of0 provided11 rather than the

13514 = J. AM. CHEM. SOC. 2005, 127, 13514—13515 10.1021/ja055220x CCC: $30.25 © 2005 American Chemical Society
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Scheme 3. Synthesis of Intermediate 72
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aKey: (a) Li/NHs, t-BuOH, THF,—78°C; NCCQ:Me, 72%; (b) NaH,
PhNTE, DME, 98%; (c) Pd(PPh) BusSnH, LiCl, THF, 55°C, 91%,; (d)
LHMDS, Me(OMe)NHHCI, THF, —10 °C, 79%; (e) vinylMgBr, THF,
—10°C, 84%; (f) FeCd, CH.Cly, 72%; (g) EtAICN, THF, E&N, TMSCI;
(h) t-BuOK, THF,—78°C, N-(5-chloro-2-pyridyl)triflimide, 86% over two

o
N

Differentiation Scale Unit
o o
L o

steps; (i)i-PrMgCl, ZnC}, LiCl, (dppf)PdCh, THF, 55°C, 75%; (j) DIBAL- (-)-Control  Compound2 Compound8  (+)-Control

H, CH,Cl, —78 °C, 88%); (k) NaClQ, NaH,POy, t-BuOH/H;O; (I) Mel, (DMS0) (30 uM) (30 pm) (NGF)

K2COs, DMF; (m) THF, HCI/H,O; 92% over three steps. Figure 1. Images of differentiation and neurite outgrowth of PC-12 cells
h Svnthesis of Scabronine G2 after treatment with the 1321N1 cell culture medium conditioned by: (A)

Scheme 4. Synthesis of Scabronine DMSO (negative control), (B) scabronine G methyl es&r30 «M), and

COoMe

(C) compound (30 M), and graphical evaluation of neurite outgrowth
of PC-12 cells (P < 0.001 relative to DMSO control).
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practiced. Conversion of the nitrile to the corresponding methyl
ester and deketalization provided cyclohexan@ne

The stage was now set for further elaboration to scabronine G.
Ketone7 was converted to thiopropylmethylidene intermedikfe
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